SPaMD_Visualizer_manual

目录

1 Model Part1
1.1 Monocrystall1
1.1.1 cF4[225]-A1(Cu) Monocrystall1
1.2 Polycrystal2
1.2.1 cF4[225]-A1(Cu) Polycrystal2
1.2.2 cF4[225]-A1(Cu) Polycrystal (Manual)5
1.3 Bilayers
1.3.1 cF4[225]-A1(Cu)/ cI2[229]-A2(W) Bilayers6
1.4 Multilayer7
1.4.1 cF4[225]-A1(Cu)/ cI2[229]-A2(W) Multilayer7
1.5 Nanocomposite
1.5.1 Nanocomposite
2 View Part10
2.1 Camera
2.2 Setting11
3 Analysis Part13
3.1 Au Nanoindentation 13
3.1.1 CNA Analysis13
3.1.2 STA Analysis17
3.1.3 SVA Analysis20
3.1.4 NTA Analysis
3.2 CuNi mismatch dislocation
3.2.1 CNA Analysis22
3.2.2 IDA Analysis
3.2.3 NTA Analysis

3.3 Tensile nucleation of CuNi	26
3.3.1 CNA Analysis	26
3.3.2 IDA Analysis	
3.4 Fe_screw dislocation	
3.4.1 NTA Analysis	28
3.4.2 DDA Analysis	29
3.5 Fe Grain boundary torsion	31
3.5.1 CNA Analysis	31
3.5.2 NYE Analysis	32
Appendix	
1. Quasistatic	
2. Shock	35
3. Dynamic	

1 Model Part

1.1 Monocrystall

1.1.1 cF4[225]-A1(Cu) Monocrystall

- 1 Select Monocrystall Modelling _Select model
- 2) Select cF4[225]-A1(Cu)_Structure, lattice parameters_Lattice
- ③ Setting expansion times:10_Duplicate
- (4) Setting crystal orientation _Orientation
- **(5)** Preview or Export

1.2 Polycrystal

1.2.1 cF4[225]-A1(Cu) Polycrystal

- ① Choosing Polycrystall Modelling_Select model
- 2 Setting Lattice Parameter 200Å_x, _y, _z
- ③ Setting Lattice Gap 0. 1Å_Cutoff
- 4 Choosing grain distribution pattern:Random Grain_Method
- (5) Setting the number of grains:8_Number
- 6 Setting the number of random seeds:100_Seed
- 7 Read cF4[225]-A1(Cu) monocrystal file_Select
- 8 Preview or Export

View Model Select	Analysis t model: Polycrystal 🔶
x	200
y:	200
Z	200
Cutoff:	0.1
Method:	Random grain 🔶
Number:	8
Seed:	100
onocrystal	_cF4[225]-A1(Cu).lmp Select
	More
	Preview
	Export
-	

(9) For the generated polycrystalline file, see the detail interface for the grain number, source file, position and orientation information _More

	File	X	у	Z	xh	xk	xl	yh	yk	yl	zh	zk	zl
	1												
2	1												
	1												
	1												
	1												
	1												
	1						-0.399644						
	1												

(1) Setting the number of grains:2_Grain Number, clicking Add, for adding more 2 grains in the former model.Enter 2-4 in the left table and click Delete to delete the grains in 2-4.Enter 2-2 in the bottom table_Grain Type and click Clear to clear the information of grain .The former operation only take effect when Save or Save_Exit.

	File	X	у	Z	xh	xk	xl	yh	yk	yl	zh	zk	zl
1	1												
2	1												
3	1												
4	1												
5	1												
6	1												
7	1						-0.399644						
8	1												
9	1												
10	1												

🔄 Model Detail

	File	х	у	Z	xh	xk	xl	yh	yk	yl	zh	zk	zl
1	1												
2	1												
3	1		74.9474										
4	1												0.910674
5	1												
6	1												
7	1												

🔄 Model Detail

	File	x	у	Z	xh	xk	xI	yh	yk	yl	zh	zk	zl
1	1												
2	0	192.859	109.177	172.265	0.798882	-0.416325	-0.434121	-0.33794	0.286389	-0.896537	-0.497578	-0.862934	0.0880976
3	1												
4	1						-0.399644	-0.545044					0.910674
5	1												
6	1												
7	1												

1.2.2 cF4[225]-A1(Cu) Polycrystal (Manual)

Main Process:

 Choosing grain distribution pattern:Manual _Method.The number of random seeds is 0 by default_Seed

Other settings is same with those in 1.2

② Choosing interface in detail_More and modify the orientation and distribution of grains manually

	File	X	У	Z	xh	xk	xl	yh	yk	yl	zh	zk	zl
1	1	50	50	50	0.447015	0.829119	0.335766	-0.828209	0.241781	0.50558	0.338005	-0.504086	0.794764
2	1	150	50	50	-0.692745	-0.638688	0.334934	0.545886	-0.767879	-0.335217	0.471288	0.0493843	0.880596
3	1	50	150	50	0.0254657	0.967136	0.252979	-0.407931	-0.22098	0.885867	-0.912658	0.125757	-0.388897
4	1	50	50	150	-0.907939	-0.228737	0.351178	0.359653	.00495151	0.933073	0.215167	-0.973476	0.0777701
5	1	50	150	150	-0.763466	0.645079	0.031511	0.0168554	0.0288723	0.999441	-0.645628	-0.763571	-0.01117
6	1	150	50	150	-0.634061	-0.324269	0.702009	0.507283	0.510758	0.694111	0.583635	-0.796226	0.159356
7	1	150	150	50	0.260086	-0.941419	-0.214675	-0.29563	0.134013	-0.945856	0.919216	0.309468	-0.243456
8	1	150	150	150	0.512531	-0.627935	0.58567	-0.73983	-0.669144	0.0699939	-0.435849	0.397422	0.807522

^③Preview or Export

1.3 Bilayers

1.3.1 cF4[225]-A1(Cu)/ cI2[229]-A2(W) Bilayers

Main Process:

- ① Select Bilayers Modelling_Select model
- 2) Set the normal direction : X axis
- ③ Read the monopoly file for the upper layer and lower layer respectively :cF4[225]-A1(Cu).lmp and cI2[229]-A2(W).lmp_Select Model. Set the thickness of layer:10Å_Thickness.as the length in the X direction. The gap of grain boundary has been set automatically
- (4) Set the max expansion times for 30 in Y and Z direction respectively: 30_Max Periodicity.
 - Click Auto to obtain the min expansion times for upper and lower layer in the

Y and Z direction to match the size of upper and lower layer.

(5) Set the thickness of vacuum layer:10 Å.(0 if not needed)

у	🔿 z
Cu).Imp	Select Mode
Z	21
(W).Imp	Select Mode
Z	24
30	Auto y
30	Auto z
10	
Preview	
	2: (W).Imp 2: 30 30 10 Preview

6 Preview or Export

1.4 Multilayer

1.4.1 cF4[225]-A1(Cu)/ cI2[229]-A2(W) Multilayer

- ① Select Multilayer Modelling _Select model
- ② Set the expansion time:3_Layer Periodicity for other settings same with 1.3
- ③ Preview or Export

	Sele	ct model:	Multila	yer	\$	
	• x		у			Z
Boti	iom:			Fare		1.2.1.5
st	al_cF4[225]-A1(0	Cu).Imp	Sele	ct Mo	odel
у	: 21		Z	21		
Th	nickness	s: 10				
Upp	ier:					
ry	stal_cl2	[229]-A2((W).Imp	Sele	ct Mo	del
у	24		z	24		
Th	nickness	5: 10				
N	lax Peri	iodicity y:	30		Aut	o y
P	Max Per	iodicity z	30		Aut	o z
L	ayer Pe	eriodicity:	3			
		P	review			
		E	Export			

1.5 Nanocomposite

1.5.1 Nanocomposite

Main Process:

① Select Nanocomposite Modelling _Select model

② Set the number of grain types:6(max:6)_Grain Type and read 6 Monocrystal file_Select for the other settings same with 1.2

View Model	Analysis	
Select	model: Nanocompos	it 🗢
X:	200	
y:	200	
Z	200	
Cutoff:	0.1	
Method:	Random grain	\$
Number:	8	
Seed:	100	
Grain T	Гуре 6	\$
#1 stal	_cF4[225]-A1(Cu).lmp	Select
#2 tal_o	:F8[216]-B3(ZnS).Imp	Select
#3 al_c	F8[225]-B1(NaCl).lmp	Select
#4 _cF1	2[225]-C1(CaF2).Imp	Select
#5 rysta	al_cl2[229]-A2(W).lmp	Select
#6 al_c	P2[221]-B2(C,sCl).lmp	Select
-	More	

③ Users need to set the orientation and distribution of each grain type respectively in detail interface_More.

For example, enter 6-6 and Select the grain type :#6_Grain Type.

Click Select to set the sixth file for the NO.6 grain type

File	2	Х	у		Z	xh	xk	xl	yh	yk	yl	zh	zk	zl
1														
2	184	.271	58.44	9	159.648	0.304329	0.83747	-0.453903		-0.534838	-0.795123	-0.908656	0.112217	-0.402182
3	69.	1794	126.6	95	102.841	-0.678836	0.696274	0.233203	-0.531151	-0.246327	-0.81068	0.507011	0.674185	-0.537043
4														
5					134.581	0.841872			-0.466347					0.415121
6	92.8	3556	107.5	59	3.07016	0.993245	0.0264436	0.112986	-0.115355	-0.119407	0.986121	0.0125853	-0.992493	-0.12165
G	rain Number	0	Add 0	- 0	Delo	ete Delete	: All							

④ Preview or Export

2 View Part

(Take cF4[225]-A1(Cu) Nanocomposite as example)

2.1 Camera

Main Process:

- 1) Select the mode :Camera_Select control
- ② Users could click Mov, Rot, Zoom, Pers in the camera interface to control move,rotate,zoom,perspective

Click Reset to clear all the operations in the Camera interface

③ Users could set width and height of snapshot in the Snapshot interface and save the snapshot in the format of bmp,png or jpg

The current settings of snapshot is 940*620 with the format of png

2.2 Setting

Main Process:

- 1) Select the control mode :Setting_Select control
- In the color bar, users need to set the coloring object including id, type, x, y, z and other data in the export file

In the RGB bars, users need to set coloring object for R,G,B value respectively

(Min :-4 Max :15)

③ Users could trim or delete in the Trimming interface with the center plane in the direction of three axes as the datum

Attention :Every time you click Cut, you will cut on the basis of the previous operation.

Click Recover to recover the status before the last trimming operation

(4) Click Inverse to control inversely

Click Reset to clear all the operations expect those in the Trimming interface

(5) Users could control atom radius in the Atom interface.

The currrent proportion is set to 1 as all types of atom keep their initial status Click Rad to zoom

Click Chr to control the color brightness of atoms

Click Inspect Particle to retrieve data information in the previewing window

(6) Control the frame of box /the color of backgraound/the three axes in the Box/Backgroud/Axes interfaces respectively

3 Analysis Part

3.1 Au Nanoindentation

3.1.1 CNA Analysis

- 1) Read monocrystal files_Read file
- ② Select the method of research_CNA and activate_Active
- ③ Set a series of parameters and click Run Analysis
- (4) Click View to make a visual view
- (5) Click File Export to export files : Au_CNA.lmp

SPaMD Visualizer					
File View Mode	el Simulation Analys	sis <u>T</u> ools <u>H</u> elp			
Import Ctri+i	88124	RAAN			
Export Ctrl+E	Save file (5)	Export files		×	
Choose met	← → * ↑ <mark> </mark> «	Au_nanoindent > NYE	✔ O 没 搜索"NYE"		
Active	组织 ▼ 新建文件夹	1		- 0	
Nye Tensor Ana	▶ 图片	^ 名称 ^	修改日期	类型	
F:\desktop\SP	● 文档	🛃 Au_NYE.lmc	2020/9/14 18:29	LMC 文	
Type1 cutor	◆ 下致	Note: if there are	Cut,Delete or other	operations i	n the view
Eliminate_ce	🔜 桌面 <mark>—</mark> Mg-fit	process, the output	file is the file after de	leting the ato)m
Burgers 0	MgNb	If you want to ou	tput all the atom in	formation, p	lease click
Type1 structure	Au_nanoinde	Reset			
Type1 Orient 1	NYE	v <		>	
Type Fondation	文件名(N): Au	NYE.lmc		~	
1	保存类型(T): LA	MMPS custom dump file (*.lmc)		~	
1				ED:34	
	▲ 隐藏又件夹		17 (5)		
		LMC file detected with	15264 atoms and 1 types		
		Box size 249.725006 2	45.104004 244.874854		
-				-	

3.1.2 STA Analysis

- 1) Read file
- 2 Select the method of research:STA and activate_Active
- ③ Select the reference file_REFILE
- ④ Set a series of parameters and click Run Analysis
- (5) Use View for visual viewing
- 6 File Export : Au_STA.lmp

Files Export

Output a file containing various properties of the calculation_Au_STA.lmc

This file contains all the calculation information in the red box above. Later, we can use Originpro, MATLAB and other software to further process and plot the data.

3.1.3 SVA Analysis

Main Process:

- 1) Read file
- 2 Select the method of research :SVA and activate_Active
- ③ Select the reference file_REFILE
- ④ Set a series of parameters and click Run Analysis
- (5) Use View for visual viewing
- 6 File Export : Au_SVA.lmp

No more details for 1234

SPaMD Visualizer	0 0		\times
<u>File</u> <u>Vie</u> ation <u>A</u> nalysis <u>T</u> ools <u>H</u> elp			
ka k			
View Mo z Character Type Color C SVA.X SVA.Y SVA.Z Average Input: SVA SVA Nax. 90142 SVA SVA SVA SVA SVA SVA SVA SVA			
○ RGB Bar R: type ◆ G: type ◆		ALLOS COLONY	
Trimming:		No.	
Normal X: 0			
Normal Y: 0			
Normal Z: 1			
Distance: 200			
Slice Width: 3			
Cut Recover			
From: type 🗢 Min 0 Max 1			

Files Export

Output a file containing various properties of the calculation_Au_STA.lmc. Later, we can use originpro, MATLAB and other software for further drawing.

3.1.4 NTA Analysis

Main Process:

- ① Read file
- 2 Select the method of research : NTA and activate_Active
- ③ Select the reference file_REFILE
- ④ Set a series of parameters and click Run Analysis
- (5) Use View for visual viewing
- 6 File Export : Au_NTA.lmc.

No more details for 1235

Run NTA analysis in the base	of 1.1CNA Analysis – – ×
File View Model Simulation Analysis	Tools Help
3 3 × 8 8 8 2 <i>8</i> 6	B B I
View Model Analysis	
Choose method: nta	(4)Set the parameter
Active	
Nye Tensor Analysis	- and click Run Analysis
F:\desktop\SPaMD_exp\At Select Model	
Type1 cutoff 3.48	
Eliminate cell ON	all the concernment of the
Burgers 0 0 0	
Type1 structure fee + 4.078	
Type1 Orient 1 1 -2	
1 1 0	
-1 1 0	
1 1 1	
Run Analysis	
Click Run Analysis	

7 Files Export

For the output Au_NTA.lmc,use other professional drawing software, such as originpro, MATLAB, for further drawing.

3.2 CuNi mismatch dislocation

3.2.1 CNA Analysis

- 1) Read file
- 2 Select the method of research_CNA and activate_Active
- ③ Set a series of parameters and click Run Analysis
- (4) Use View for visual viewing

3.2.2 IDA Analysis

Main Process:

- 1) Read file
- 2 Select the method of research: IDA and activate_Active
- ③ Select the reference file_REFILE
- ④ Specify the path and name of the output file _CuNi_IDA.lmc
- (5) Set a series of parameters and click Run Analysis
- 6 Read CuNi_IDA.lmc file again and Use View for visual viewing

Note: for the atomic number of the result obtained by this analysis method is different from that of the initial model file, you need to specify the output name and path before analysis.

After analysis is completed, you need to open the output file before further

observation.

SPaMD Visualizer	View CuNi interface dislocatio
e View Model Simulation Analysis Tools	Help
	Disregistry coloring
Z Disregistry X	
Input: Disregistry Y Disregistry Z 46929 Max 211442	
RGB Bar	
R: type 🗢 G: type 🗢 B: type 🗢	
Trimming:	
Normal X: 0	
Normal Y: 1	
Normal Z: 0	
Distance: 0	·····
Slice Width: 3	
Cut Recover	
From: type 🔶 Min 0 Max 1	
Delete Recover	
Inverse Reset	
Atoms:	
Relative Radius: type1 🔶 1	
Rad+ Rad- 0.1 LMC Box	file detected with 3042 atoms and 1 types size 172.554352 313.256806 99.623948
Chr+ Chr- 0.1	

3.2.3 NTA Analysis

- 1 Read file
- 2 Select the method of research :NTA and activate_Active
- ③ Select the reference file_REFILE
- (4) Set a series of parameters and click Run Analysis
- 5 Use View for visual viewing
- 6 File Export : CuNi_misfit_NTA.lmc

3.3 Tensile nucleation of CuNi

3.3.1 CNA Analysis

Main Process:

- 1 Read file
- 2 Select the method of research :CNA and activate_Active
- ③ Set a series of parameters and click Run Analysis
- (4) Use View for visual viewing
- 5 File Export : CuNi_tensile_CNA.lmp

6 Files Export

Note: the output file is the file after cutting and deleting atoms, which is convenient for further drawing

To output all atomic information files, click Reset to clear all operations before output

3.3.2 IDA Analysis

- 1) Read file
- (2) Select the method of research:IDA and activate_Active
- ③ Select the reference file_REFILE
- ④ Specify the path and name of the output file : CuNi_IDA.lmc
- (5) Set a series of parameters and click Run Analysis
- 6 Read CuNi_tensile_IDA.lmc file again. Use View for visual viewing

3.4 Fe_screw dislocation

3.4.1 NTA Analysis

Main Process:

- 1 Read file
- 2 Select the method of research : NTA and activate_Active
- ③ Select the reference file_REFILE
- (4) Set a series of parameters and click Run Analysis
- (5) Use View for visual viewing
- (6) File Export : Mg_NTA.lmc

7) Files Export

Output a file containing various properties of the calculation_Au_Nta_lmc, later users can use originpro, MATLAB and other software for further drawing

3.4.2 DDA Analysis

Main Process:

- 1) Read file
- 2 Select the method of research :DDA and activate_Active
- ③ Select the reference file_REFILE
- ④ Specify the path and name of the output file: Fe_DDA.lmc
- (5) Set a series of parameters and click Run Analysis
- 6 Read Fe_DDA.lmc file again. Use View for visual viewing

Note: because the periodicity of the read model file is p, and the periodicity requirement of the aadis program is s s p, but the function of periodicity is not involved in the SPaMD at present, so it is necessary to modify the periodicity of the model file

	ITEM: TIMESTEP
	904
	ITEM: NUMBER OF ATOMS
	5040
	ITEM: BOX BOUNDS DD DD DD
	257.45361942 306.60385585
	263,49980648 312,14592459
	0.0000000 24.82461820
	ITEM: ATOMS id type x v z c eng
allv	47018 1 257 4083557 263 5618286 1
J	
EM: TIMESTEP	
4	
EM: NUMBER OF ATOMS	
40	
EM: BOX BOUNDS ss ss pp	
7.45361942 306.60385585	
3.49980648 312.14592459	
0.00000000 24.82461820	

manually

90

IT 50 IT 25

3.5 Fe Grain boundary torsion

3.5.1 CNA Analysis

- ① Read file
- 2 Select the method of research_CNA and activate_Active
- ③ Set a series of parameters and click Run Analysis
- (4) Use View for visual viewing
- 5 File Export : Fe_CNA.lmp

3.5.2 NYE Analysis

- 1) Read file
- ② Select the method of research :NYE and activate_Active
- ③ Set a series of parameters and click Run Analysis
- (4) Use View for visual viewing
- 5 File Export : Fe_twist_Nye.lmc

Appendix

(Note: the contents in the appendix are the functions of the simulation module. The following shows some functions and simulation results, which are not yet open.)

1. Quasistatic

• Parameter setting: loading mode, loading direction, strain gradient and relaxation mode

ial Loading ng Node Tensi rstep 0.001	Output	Submit Load Maxiu	ling Axis: z m Strain 0	z 1.2	•		Parameter settin
ng Mode Tensi rstep 0.001	ie 🔶	Load Maxiu	ling Axis: z m Strain 0	z .2	•		Parameter settin
Node Tensi	ile 🜩	Load Maxiu	ling Axis: 2 m Strain 0	z .2	•	- /	Parameter settin
rstep 0.001		Maxiu	m Strain 0	0.2		- /	Parameter settin
						_	Parameter settin
			-				
lode: FIRE	\$	Load Co	ondition:	Uniaxial stra	¢		
						_	
			0.000	Dest	Marit		
				Save	Save Back	Save Back Nex	Save Back Next

•The stress-strain curve is drawn after loading:

•Loaded model:

2. Shock

• Parameter setting:

•Stress strain curve:

•Loaded model:

3. Dynamic

• Parameter setting:

Strain Rate 1 Maxium Strain 0.2 elax Setting Relax Mode: Nose Hover ◆ Load Condition: Uniaxial stre: ◆ Timestep 1 Temperature 300
Relax Mode: Nose Hover ♦ Load Condition: Uniaxial stre:♦ Timestep 1 Temperature 300

•Stress strain curve:

•Loaded model:

